Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Suzan Özçelik, ${ }^{\text {a }}$ Muharrem Dincer, ${ }^{\text {a }}{ }^{*}$ Memet Sekerci, ${ }^{\text {b }}$ Ayla Balaban ${ }^{\text {c }}$ and Ümmühan Özdemir ${ }^{\text {c }}$

${ }^{\text {a }}$ Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, ${ }^{\mathbf{b}}$ Frrat University, Arts and Sciences Faculty, Department of Chemistry, 23119- Elazığ, Turkey, and ${ }^{\text {c }}$ Gazi University, Arts and Sciences Faculty, Department of Chemistry, Ankara, Turkey

Correspondence e-mail: mdincer@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.088$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

N-Phenyl- N^{\prime}-(2-thienylmethylene)hydrazine

The title molecule, $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}$, is almost planar with normal bond lengths and angles. The crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ and van der Waals interactions.

Received 30 July 2004
Accepted 11 August 2004 Online 21 August 2004

Comment

Thiophene-containing compounds are known as materials with potential applications in the flavor (Bertram et al., 1993) and pharmaceutical industries (Press, 1991), in conducting polymer design (Bloor, 1995), as well as in non-linear optical materials (Nalwa, 1993). Moreover, thiophene derivatives are often used as intermediates in synthetic chemistry. The chemistry of hydrazones has been intensively investigated in recent years, owing to their coordinating capability, pharmacological activity, antibacterial and antifungal properties, and their use in analytical chemistry as highly selective extractants (Domino et al., 1984; Sakamoto et al., 1993; Li et al., 1998).

(I)

We report here the crystal structure of the title compound, (I) (Fig. 1), synthesized by a condensation reaction of thio-phene-2-carbaldehyde with phenylhydrazine. All bond lengths (Table 1) and angles in (I) are normal. The molecule is distorted from planarity; the dihedral angles of phenyl and thiophene rings with the plane formed by atoms $\mathrm{C} 1 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 7 /$ C11 are 9.6 (3) and 9.82 (3) ${ }^{\circ}$, respectively. The crystal packing (Fig. 2) is mainly stabilized by van der Waals interactions. However, there is a short $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cg}$ (Cg is the centroid of the phenyl ring) contact (Table 2), which may be attributed to a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction.

Figure 1
An ORTEP-3 (Farrugia, 1997) drawing of (I), showing the atomic numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

Experimental

Compound (I) was prepared according to the method described in the literature by Sarı \& Gürkan (2003). A stirred mixture of phenylhydrazine ($108 \mathrm{~g}, 1 \mathrm{mmol}$) and thiophene-2-carboxaldehyde $(112 \mathrm{mg}, 1 \mathrm{mmol})$ in methanolic media was refluxed for 6 h . After cooling, the precipitate was filtered off and was crystallized from methanol (yield 78%, m.p. 398 K).

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}$
$M_{r}=202.27$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.0473$ (6) \AA
$b=7.4417$ (7) \AA
$c=22.376$ (3) A
$V=1006.97(19) \AA^{3}$
$Z=4$
$D_{x}=1.334 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS-2 diffractometer
ω scans
Absorption correction: by
integration (X-RED32;
Stoe \& Cie, 2002)
$T_{\text {min }}=0.892, T_{\text {max }}=0.986$
5892 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.088$
$S=0.93$
1738 reflections
127 parameters
H-atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 12880 reflections
$\theta=1.8-25.8^{\circ}$
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colorless
$0.50 \times 0.33 \times 0.05 \mathrm{~mm}$

1738 independent reflections
1403 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.054$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-6 \rightarrow 7$
$k=-8 \rightarrow 8$
$l=-26 \rightarrow 26$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.052 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}_{\mathrm{m}}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}$
Absolute structure: (Flack, 1983),
688 Friedel pairs
Flack parameter $=0.03(12)$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{N} 1-\mathrm{N} 2$	$1.363(3)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.381(4)$
$\mathrm{S} 1-\mathrm{C} 8$	$1.709(3)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.272(4)$
$\mathrm{S} 1-\mathrm{C} 11$	$1.721(3)$	$\mathrm{C} 7-\mathrm{C} 11$	$1.445(4)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 \cdots C g^{\mathrm{i}}$	0.93	2.68	$3.461(3)$	142

Symmetry code: (i) $-x, y-\frac{1}{2}, \frac{1}{2}-z . C g$ is the centroid of the phenyl ring.

All H atoms were positioned geometrically $(\mathrm{N}-\mathrm{H}=0.86, \mathrm{C}-\mathrm{H}=$ $0.93 \AA$) and refined using a riding model. The $U_{\text {iso }}$ values were assigned to $1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$.

Data collection: $X-A R E A$ (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: $X-R E D 32$ (Stoe \& Cie, 2002); program(s)

Figure 2
The packing (ORTEP-3; Farrugia, 1997) of (I). $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are indicated by dashed lines.
used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Bertram, H. J., Emberger, R., Güntrt, M., Sommer, H. \& Werkhoff, P. (1993). Recent Dev. Flavor Fragrance Chem. 11, 241-259.
Bloor, D. (1995). Chem. Ber. 31, 385-387.
Domino, P., Pelizzi, C. \& Predieri, G. (1984). Polyhedron, 3, 281-286.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Li, X. R., Sun, Z. M. \& Chang, J. C. (1998). Synth. React. Inorg. Met. Org. Chem. 18, 657-665.
Nalwa, H. S. (1993). Adv. Mater. 5, 341-358.
Press, J. B. (1991). Chem. Heterocycl. Compd, 44, 397-502.
Sakamoto, H., Goto, H., Yokoshima, M., Dobashi, M., Ishikawa, J., Doi, K. \& Otomo, M. (1993). Bull. Chem. Soc. Jpn, 66, 2907-1914.
Sarı, N. \& Gürkan, P. (2003). Transition Met. Chem. 28, 687-693.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

[^0]: (C) 2004 International Union of Crystallography

